
TD 600

SISTEMA DI TRASMISSIONE DATI SHDSL TELECO

MONOGRAFIA DESCRITTIVA

EDIZIONE Settembre 2008 MON. 225 REV. 2.8

INDICE

DESCRIZIONE DEL SISTEMA	4
POSSIBILI CONNESSIONI	5
SORGENTE DI SINCRONISMO	5
PRESTAZIONI DEL SISTEMA	6
COMPONENTI DEL SISTEMA	8
NTU SERIE TS 605.4	9
<u>DESCRIZIONE</u>	9
SCHEMA A BLOCCHI DELL'APPARATO TS 605.4	10
PARTI FUNZIONALI PRINCIPALI DELL'APPARATO TS 605.4	11
COSTITUZIONE	11
CONNETTORI DELL'APPARATO TS 605.4	12
PREDISPOSIZIONE DEI PONTICELLI	14
INDICATORI E COMANDI	14
INDICAZIONI LUMINOSE DI ALLARME E FUNZIONAMENTO	15
CARATTERISTICHE TECNICHE	16
LTU SERIE TS 607	17
DESCRIZIONE SCHEMA A PLOCCHI DELLA SERVE DI ARRADARIATI TO COZ	17
SCHEMA A BLOCCHI DELLA SERIE DI APPARATI TS 607	18
PARTI FUNZIONALI PRINCIPALI DEGLI APPARATI TS 607 COSTITUZIONE	19 19
CONNETTORI DEGLI APPARATI DELLA SERIE TS 607	20
PREDISPOSIZIONE DEI PONTICELLI	24
INDICATORI E COMANDI	25
INDICAZIONI LUMINOSE DI ALLARME E FUNZIONAMENTO SERIE TS 607	26
CARATTERISTICHE TECNICHE	28
REG RIGENERATORE	31
DESCRIZIONE	31
SCHEMA A BLOCCHI DEL RIGENERATORE	32
PARTI FUNZIONALI PRINCIPALI DEL RIGENERATORE	33
COSTITUZIONE	33
CONNETTORI DEL RIPETITORE	34
PREDISPOSIZIONE DEI PONTICELLI	34
<u>INDICATORI E COMANDI</u>	35
<u>INSTALLAZIONE DEL RIPETITORE RP 926</u>	35
CARATTERISTICHE TECNICHE	35
<u>CONTENITORI PER RIGENERATORI</u>	36
<u>DESCRIZIONE</u>	36
CONTENITORE DA PALO CP 396	36
INSTALLAZIONE DEL CP 396	36
SUB-TELAIO CN 380	37
DESCRIZIONE CN 380 E MA 172	37
CONNETTORI DEL CN 380	38
CONNETTORI MA 172	44
PREDISPOSIZIONE DEI PONTICELLI MA 172	45
INDICAZIONI LUMINOSE DI ALLARME E FUNZIONAMENTO DEL MA 172	45
INDICATORI E COMANDI	46
CARATTERISTICHE TECNICHE	46

TELAIO ETSI N3 TN 338	48
IMPATTO AMBIENTALE E SICUREZZA	48
CONDIZIONI AMBIENTALI DI FUNZIONAMENTO TN 338	48
SISTEMA DI GESTIONE	49
L.M.S. (LINE MANAGEMENT SYSTEM)	49
AFFIDABILITA'	50
PROTEZIONE EMC E SICUREZZA	50
IMPATTO AMBIENTALE	50
ACCESSORI	51

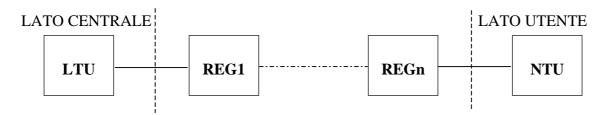
DESCRIZIONE DEL SISTEMA

Il sistema SHDSL Teleco, progettato e realizzato nei laboratori della TELECO S.p.A., è un'apparecchiatura di ultima generazione per reti ad accesso digitale e permette di trasportare una connessione E1 su due fili oppure su quattro fili, con la possibilità di cambiare la velocità di linea in dipendenza dei timeslots effettivamente usati. Il sistema SHDSL Teleco è stato realizzato in conformità alle normative ETSI.

Il sistema SHDSL Teleco presenta molti vantaggi, tra i quali:

- è facilmente integrabile nelle reti già esistenti;
- maggiore affidabilità (numero componenti ridotto);
- dimensioni ridotte;
- consumi ridotti (utilizzo di componenti di linea a basso consumo);
- costi ridotti
- La distanza raggiungibile dipende dalla velocità in linea.

Il sistema SHDSL Teleco può essere considerato come il miglior modo per la trasmissione dati nella rete già esistente e permette di evitare i costi elevati dei cavi a fibra ottica, oppure dall'uso di più cavi.

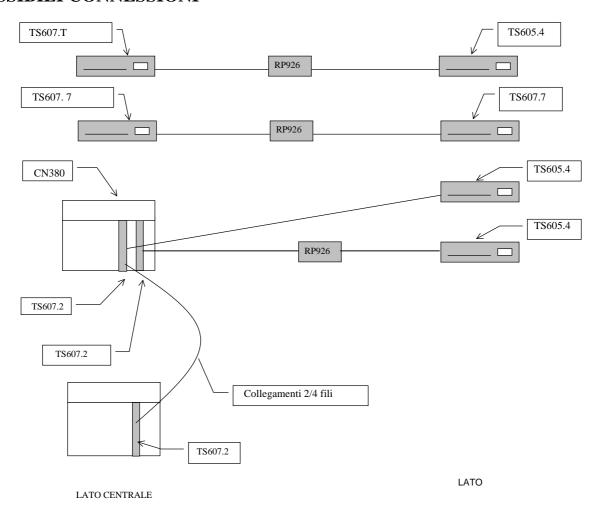

Le applicazioni tipiche di alta velocità per il Sistema Teleco sono: interconnessione con i centralini PABX e apparati PDX, interconnessioni con le stazioni base nella rete della telefonia mobile, e implementazione dei punti di accesso ad internet veloce, sostituzione dei collegamenti HDB3. Le interfacce disponibili per il Sistema SHDSL Teleco corrispondono agli standard correnti e forniscono i seguenti modi operativi:

- 2 Mbit/s non strutturato (verso ITU-T G.703)
- 2 Mbit/s strutturato (verso ITU-T G.703/G.704, ISDN-PRA)
- N x 64 Kbit/s (verso ITU-T X.21, V.35, V.36)

Il sistema SHDSL Teleco può essere gestito tramite una apposito software denominato L.M.S. (Line Management System).

Qui di seguito saranno descritti i dispositivi che fanno parte del sistema SHDSL Teleco e verrà fornita una visione d'insieme di tutti i componenti, che possono essere installati.

In questo schema a blocchi viene visualizzata la configurazione di riferimento per una tipica connessione SHDSL tra centrale e utente.


LTU: Terminale di Centrale

REG: Rigeneratore

NTU: Terminale di Utente

POSSIBILI CONNESSIONI

In questo disegno si può notare una tipica connessione tra le unità Teleco, ma in generale tutte le unità possono essere connesse tra di loro tramite l'interfaccia SHDSL con una sola restrizione: bisogna collegare i dispositivi a due fili con quelli a due fili e i dispositivi a quattro fili con quelli a quattro fili. Si possono inoltre collegare due unità NTU, programmando però la prima come MASTER SHDSL INTERFACE (STU-C) e la seconda come SLAVE SHDSL INTERFACE (STU-R). Il default è STU-C per le apparecchiature LTU, e STU-R per gli apparati NTU.

SORGENTE DI SINCRONISMO

Sul sistema Teleco possono essere selezionati quattro diverse tipologie di sincronismo:

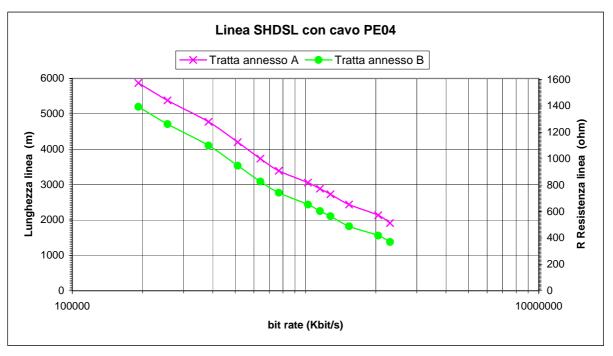
a. SINCRONISMO INTERNO : sincronismo SHDSL con riferimento al clock interno

b. SINCRONISMO DA E1 : sincronismo SHDSL dall'interfaccia G.703

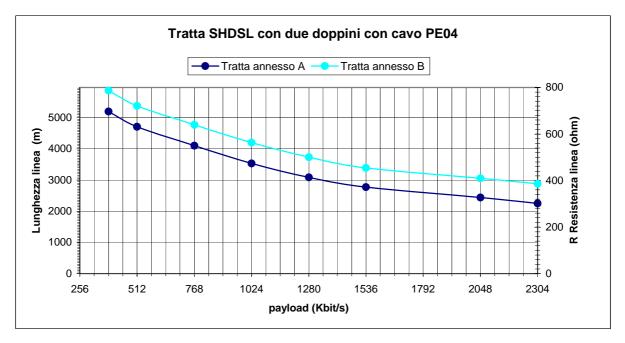
c. SINCRONISMO ESTERNO : sincronismo SHDSL da una sorgente di sincronismo esterna

(solo per apparati TS 607.2 e TS 607.T)

d. PLESIOCRONO : sincronismi indipendenti



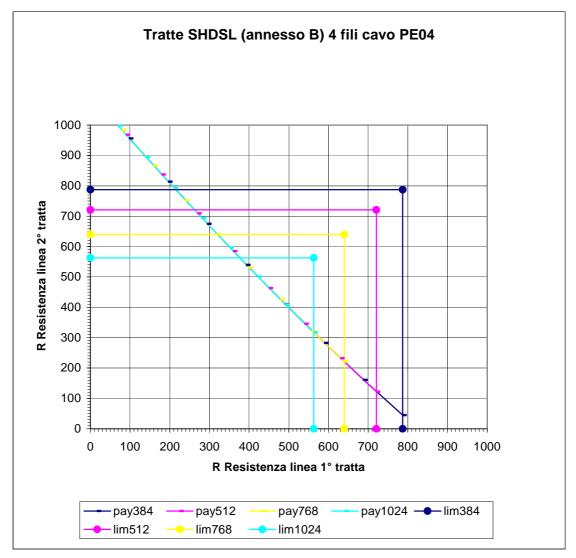
PRESTAZIONI DEL SISTEMA


VALUTAZIONE DISTANZE MASSIME RAGGIUNGIBILI

Al fine di valutare la tratta massima raggiungibile con la telealimentazione, occorre partire dalla tratta massima raggiunta dal segnale SHDSL (terminale alimentato localmente).

Nota: valore resistivo del cavo pari a 268 ohm/Km.

Occorre a questo punto considerare il caso specifico e cioè l'utilizzo di una tratta SHDSL a 4 fili dove il traffico viene diviso su due doppini e la resistenza di linea vista dal telealimentatore è dimezzata.


A questo punto, considerando di alimentare tramite terminale di centrale (LTU) i primi due rigeneratori (REG) e di alimentare localmente il terminale remoto, ed ipotizzando un consumo del rigeneratore di circa 3 W, otteniamo due grafici (A e B) in cui vengono evidenziate le distanze raggiungibili.

Sui due grafici sono rappresentate due tipi di curve:

- Una serie di curve sostanzialmente indipendenti dal payload (curve pay384-1024) che dividono il quadrante in due zone: una zona sotto la curva in cui il sistema funziona, e una zona sopra la curva in cui il sistema non funziona per mancanza di potenza.
- Una seconda serie di limiti (lim384-1024) all'interno dei quali, le distanze tra i rigeneratori sono inferiori rispetto la tratta massima e quindi il sistema può funzionare.

Dal grafico seguente si possono trarre le seguenti conclusioni:

- 1. Al diminuire del payload diventano sempre più rilevanti i limiti dovuti alla telealimentazione.
- 2. Nel caso di payload minimo (384 Kbit/s) l'aggiunta del secondo rigeneratore porta ad un aumento di tratta inferiore al 25%, cioè nel caso migliore si passa da 800 Ohm (1 solo rigeneratore) a 1000 Ohm (2 rigeneratori).

COMPONENTI DEL SISTEMA

Il sistema SHDSL Teleco è composto da diversi apparati che possono essere configurati dall'operatore.

Il sistema SHDSL è composto da:

TN 338	Telaio ETSI N3
CN 380	Sub-telaio N3 + Kit Connettori S 381
CP 396	Contenitore unificato da esterni cablato SHDSL 4 sistemi + Kit installazione muro
MA 172	Unità Allarmi da rack con due porte di accesso Ethernet 10/100 e 1 porta locale
RP 926	Rigeneratore da tavolo 1 canale 4 F / 2 canali 2 F
TS 605.4	Terminale NTU SHDSL 2/4 fili da tavolo + DCE3 X/V (DB37) / G.703 (75 e 120 ohm) + Kit connettori (S 386)
TS 607.2	Terminale LTU SHDSL Master/Slave da rack con telealimentatore (4xE1/2F / 2xE1/4F / MISTO – 75 ohm) universale
TS 607.7	Terminale LTU/NTU SHDSL Master/Slave da tavolo con telealimentatore (4xE1/2F / 2xE1/4F / MISTO – 75 ohm) universale + Kit connettori (S 385)
TS 607.T	Terminale LTU SHDSL Master/Slave da tavolo con telealimentatore (1xE1/2F o 1xE1/4F 75 – 120 ohm) + Kit connettori (S 384)

NTU -TS 605.4

Le NTU sono unità progettate per essere installate nella sede di utente, e quindi supportano una ampia serie di interfacce (interfacce dati e interfaccia G.703).

Particolare attenzione è stata data alle dimensioni ed ai consumi durante la progettazione di queste unità.

Tutte le NTU Teleco possono essere alimentate sia dalla centrale sia localmente.

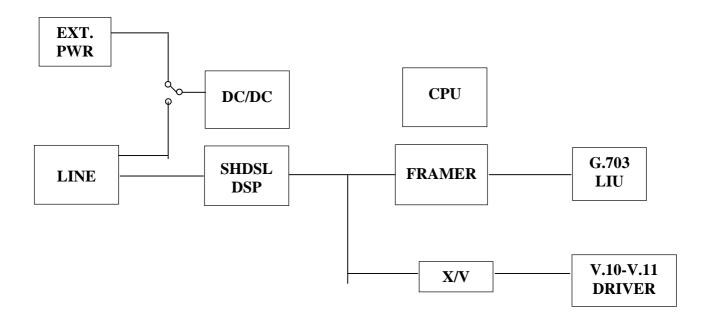
L'apparato **TS 605.4** è conforme alla normativa:

- ETSI TS 101 524 v.1.2.1 (03-2003)

ed integra la funzionalità DCE-3 in conformità al Capitolato Tecnico di Telecom Italia nº 1368.

DESCRIZIONE

L'apparato **TS 605.4** consente il trasporto verso un terminale di centrale SHDSL TELECO (TS 607.2 / TS 607.7 / TS 607.7) oppure verso un altro apparato TS 605.4 di una delle seguenti tipologie di segnale:


- a. Flusso a 2048 Kbit/s non strutturato (D2048U)
- b. Flusso a 2048 Kbit/s strutturato (D2048S)
- c. Flusso a 2048 Kbit/s strutturato con servizio di trasporto Nx64 Kbit/s
- d. Flusso a 2048 Kbit/s strutturato con prestazioni ISDN PRA

Il prodotto **TS 605.4** compie il trasporto dei dati su 2/4 fili.

SCHEMA A BLOCCHI DELL' APPARATO TS 605.4

Qui di seguito è riprodotto lo schema a blocchi dell' apparato TS 605.4 in cui si identificano:

SHDSL DSP : SHDSL Infineon chipset

X/V : Convertitore dati Nx64 circuiti di controllo

V.10-V.11 DRIVER : Driver dell'interfaccia dati

CPU : Central Processing Unit

DC/DC : Convertitore DC/DC

FRAMER : Framer G.703

G.703 LIU : Unità di interfaccia linea G.703

LINE : Connessione di linea e protezione

EXT. PWR : Alimentazione esterna

PARTI FUNZIONALI PRINCIPALI DELL' APPARATO TS 605

- Microcontrollore / memoria

Il microcontrollore si occupa della programmazione delle periferiche presenti sulla scheda, del controllo della configurazione da terminale locale o da rete, nonché della gestione dei vari tipi di allarme sia lato rete che lato utente.

Il codice è residente su una EPROM in tecnologia FLASH.

- Interfaccia G.703 lato utente

Tale interfaccia realizza la funzione di generazione ed analisi di trama del flusso PCM e di interfaccia in trasmissione e in ricezione verso l'utente.

- Alimentazione

Tale circuito soddisfa le diverse tipologie di alimentazione previste per l'apparato (telealimentazione e alimentazione locale) e fornisce il segnale di POWER OFF in caso di mancanza di alimentazione.

- Circuiti di interfaccia X/V

Costituiscono il blocco funzionale contenente i trasmettitori ed i ricevitori conformi alle raccomandazioni V10 e V11 per le diverse interfacce supportate.

- Shdsl Infineon Chipset

Comprende il framer Infineon ed il chipset front-end analogico.

Il chipset Infineon SHDSL gestisce la trasmissione e la ricezione dei segnali che provengono dalla linea in conformità con lo standard G.SHDSL.

COSTITUZIONE

L'apparato **TS 605.4** è costituito da una scheda a circuito stampato alloggiata in un piccolo contenitore da tavolo.

I materiali, utilizzati per la realizzazione di questo contenitore, sono di tipo plastico autoestinguente ed antistatico, Blend T (PC + ABS), in conformità alle norme CEI 70-1 e EN 60950 paragrafo 2.

CONNETTORI DELL' APPARATO TS 605.4

CONNETTORE SHDSL

Un connettore telefonico a 6 contatti femmina tipo RJ (RJ11) permette di realizzare l'interfaccia SHDSL, in conformità alle raccomandazioni ETSI TS 101 524 SHDSL 2/4 fili.

Pin	Segnale
1	-
2	Coppia 2: filo A
3	Coppia 1: filo A
4	Coppia 1: filo B
5	Coppia 2: filo B
6	-

CONNETTORE G.703

La massima attenuazione raggiungibile dal lato utente è 6 dB @ 1 MHz. L'apparato **TS 605.4** rende disponibile verso il lato utente, le seguenti interfacce:

- 2048 Kbit/s G.703

su connettore telefonico a 8 contatti tipo RJ femmina (RJ45)

- Velocità 2048 Kbit/s
- Impedenza predisponibile a 120 ohm o 75 ohm con adattatore esterno
- Codice programmabile AMI/HDB3

Pin	Segnale
1	TX-
2	TX+
3	-
4	RX-
5	RX+
6	-
7	-
8	-

Circuito	Abbrev.	Contatto	Denominazione	Direzione
CCITT		Connettore		
C102	SG	19-(a)37-(b)20	Massa di riferimento segnali	
C103	TXD	(a)4-(b)22	Dati in trasmissione	Da DTE a DCE
C104	RXD	(a)6-(b)24	Dati in ricezione	Da DCE a DTE
C105	RTS	(a)7-(b)25	Richiesta di trasmissione	Da DTE a DCE
C106	CTS	(a)9-(b)27	Pronto a trasmettere	Da DCE a DTE
C107	DSR	(a)11-(b)29	DCE pronto	Da DCE a DTE
C109	DCD	(a)13,33-(b)31,36*	Indicazioni dati in ricezione	Da DCE a DTE
C114	TXC	(a)5-(b)23	Temporizz. in trasm. da DCE	Da DCE a DTE
C115	RXC	(a)8-(b)26	Temporizz. in ricez. da DCE	Da DCE a DTE
C140	RL	14	Richiesta di loop 2b remoto	Da DTE a DCE
C141	LL	10	Richiesta di loop 3a	Da DTE a DCE
C142	TM	18	Indicazione di prove in corso	Da DCE a DTE
adatt. V.35		28	Indicazione di presenza adattatore X.35	Da DTE a DCE *
adatt. X.21		34	Indicazione di presenza adattatore X.21	Da DTE a DCE *
Pin riferiti al connettore a 37 contatti tipo ISO 4902				

^{*} solo su connettore V.36 del DCE

CONNETTORE DI DIAGNOSI

Permette la diagnosi e la configurazione dell'apparato connettendo un PC all'apparato d'utente esterno denominato LMS attraverso la propria interfaccia RS 232 con un connettore 9 poli femmina (DB9).

Pin	Segnale
1	-
2	TX
3	RX
4	-
5	GND
6	-
7	-
8	-
9	-

ALIMENTAZIONE

L'apparato **TS 605.4** può essere alimentato sia da centrale che localmente tramite l'apposito alimentatore (S 379).

Inoltre, si possono realizzare le seguenti interfacce usando il relativo adattatore (Vedi capitolo Accessori):

- X.21 bis / V.35 (usando l'adattatore V.36/V.35)
- X.21 / V.11 (usando l'adattatore V.36/ X.21)

PREDISPOSIZIONE DEI PONTICELLI

JP1 - JP2 - JP3 Riservati

JP4: Selezione impedenza G.703

JP4	
1-2	120 ohm
2-3	75 ohm

JP5: Sbilancio C105

JP5	
1-2	Inserito
2-3	Non inserito

JP6: Terminazione circuito C103

JP6	
1-2	Inserita
2-3	Non inserita

INDICATORI E COMANDI

Lato anteriore

Sul lato anteriore del contenitore sono serigrafati:

- la scritta SHDSL
- il logo TELECO
- il marchio CE
- le scritte di identificazione dei led
- la scritta del comando LMS

Lato posteriore

Sul lato posteriore del contenitore sono serigrafati:

- il logo TELECO
- il codice del prodotto (TS 605.4)
- le scritte di identificazione dei connettori

INDICAZIONI LUMINOSE DI ALLARME E FUNZIONAMENTO

Led verde LK (link)

Acceso fisso Link ok Data Mode Blink veloce Hand-shake training Blink lento (Hand-shake per NTU) Spento fisso (Hand-shake per LTU)

Led rosso SH (Stato dell'interfaccia SHDSL)

Acceso fisso Allarme su interfaccia locale SHDSL Blink veloce Allarme su interfaccia remota SHDSL Spento fisso nessun allarme su interfaccia SHDSL

Led rosso E1 (Stato dell'interfaccia G.703)

Acceso fisso Allarme su interfaccia locale E1 Spento fisso nessun allarme su interfaccia E1

Led giallo TST (test in corso, loop)

Acceso fisso Loop in corso

Spento fisso nessun loop in corso

CARATTERISTICHE TECNICHE

CARATTERISTICHE ELETTRICHE

TS 605.4

- Telealimentazione da centrale $45 \div 120 \text{ V c.c.}$

- Alimentazione in c.c. applicabile tramite alimentatore S 379 6 V c.c.

- Classe di isolamento di classe II

- Consumo nominale < 5 W

- Rigidità dielettrica 500 V

- Resistenza di isolamento > 1 Gohm

CARATTERISTICHE MECCANICHE

TS 605.4

- Costituzione contenitore da tavolo in plastica

- Altezza 28 mm.

- Larghezza 155 mm.

- Profondità 120 mm.

CONDIZIONI AMBIENTALI DI FUNZIONAMENTO

TS 605.4

- Temperatura di funzionamento $-5^{\circ}\text{C} \div +45^{\circ}\text{C}$

- Temperatura di immagazzinaggio / trasporto - 40°C ÷ +70 °C

- Umidità relativa fino al 90% non condensante con temperatura ambiente di 28°C

LTU – SERIE TS 607

Le LTU sono unità progettate per essere installate in centrali oppure in sale dati.

Le LTU da rack sono unità multicanale (2 o 4 fili) equipaggiate con un'interfaccia E1 verso rete.

Ogni unità LTU è equipaggiata con un telealimentatore, in grado di alimentare fino a quattro elementi di linea (4 REG o 3 REG + 1 NTU).

La scheda **TS 607** è prodotta in tre tipi: 1 in versione rack e 2 in versione tavolo, a seconda del numero di connessioni SHDSL richieste:

TS 607.2	LTU SHDSL Master/Slave da rack (4xE1/2F / 2xE1/4F / MISTO 75 ohm)
TS 607.7	LTU/NTU SHDSL Master/Slave da tavolo (4xE1/2F / 2xE1/4F MISTO – 75 ohm)
TS 607.T	LTU SHDSL Master/Slave da tavolo

DESCRIZIONE

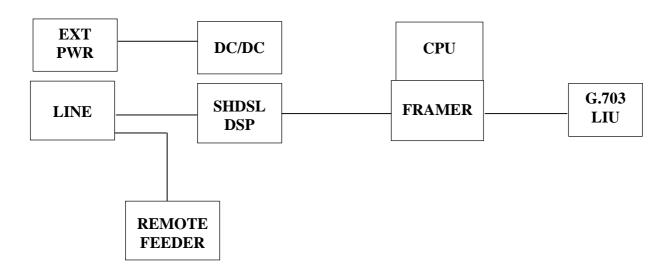
Gli apparati della serie **TS 607** permettono di trasportare (su due / quattro fili) una delle seguenti tipologie di segnale, verso un terminale di utente SHDSL TELECO (TS 605.4), oppure verso un altro apparato TS 607.

- a. Flusso a 2048 Kbit/s non strutturato (D2048U);
- b. Flusso a 2048 Kbit/s strutturato (D2048S);
- c. Flusso a 2048 Kbit/s strutturato con servizio di trasporto Nx64 Kbit/s;

(1xE1/2F o 1xE1/4F 75/120 ohm)

d. Flusso a 2048 Kbit/s strutturato con prestazioni ISDN PRA.

La serie di apparati TS 607 è conforme alla Norma:


- ETSI TS 101 524 v.1.2.1 (03-2003)

SCHEMA A BLOCCHI DELLA SERIE DI APPARATI TS 607

Qui di seguito è riprodotto lo schema a blocchi della serie di apparati TS 607 in cui si identificano:

SHDSL DSP : SHDSL Infineon chipset

CPU : Central Processing Unit

DC/DC : convertitore DC/DC

FRAMER : framer G.703

G.703 LIU : unità interfaccia di linea G.703

LINE : connettore di linea e protezione

Remote Feeder : convertitore DC/DC per alimentare le unità remote

EXT PWR : alimentazione esterna

La CPU controlla sia il chipset SHDSL Infineon che l'unità di interfaccia di linea G.703. Quattro canali sono montati sulle schede TS 607.2 e TS 607.7 per la gestione dei segnali, mentre sulla scheda TS 607.T è montato un solo canale per la suddetta gestione.

PARTI FUNZIONALI PRINCIPALI DEGLI APPARATI TS 607

- Microcontrollore / memoria

Il microcontrollore si occupa della programmazione delle periferiche presenti sulla scheda, del controllo della configurazione da terminale locale o da rete, nonché della gestione dei vari tipi di allarme sia lato rete che lato utente.

Il codice è residente su una EPROM in tecnologia FLASH.

- Interfaccia G.703 lato utente

Tale interfaccia realizza la funzione di generazione ed analisi di trama del flusso PCM e di interfaccia in trasmissione e in ricezione verso centrale.

- Alimentazione

Tale circuito soddisfa le diverse tipologie di alimentazione previste per l'apparato (telealimentazione e alimentazione locale) e fornisce il segnale di POWER OFF in caso di mancanza di alimentazione.

COSTITUZIONE

APPARATI DA TAVOLO

Gli apparati **TS 607.T** e **TS 607.7** sono costituiti da una scheda a circuito stampato alloggiata in un contenitore da tavolo.

I materiali utilizzati per la realizzazione del contenitore **TS 607.7** e **TS 607.7** sono di tipo plastico, autoestinguente ed antistatico, Blend T (PC + ABS), in conformità alle norme CEI 70-1 e EN 60950 paragrafo 2.

APPARATI DA RACK

L'apparato da rack **TS 607.2** è costituito da una scheda a circuito stampato che deve essere installata all'interno del proprio sub-telaio denominato CN 380.

CONNETTORI DEGLI APPARATI DELLA SERIE TS 607

APPARATO DA TAVOLO:

TS 607.T

CONNETTORE SHDSL (CONN. F. SUB D 9 PIN)

PIN	SEGNALE
1	-
2	-
3	-
4	-
5	TERRA
6	Canale 1 : filo b
7	Canale 1 : filo a
8	Canale 2 : filo b
9	Canale 2 : filo a

CONNETTORE G.703

Un connettore RJ45 8 contatti per collegare G.703 a 120 ohm

Pin	Segnale
1	TX-
2	TX+
3	-
4	RX-
5	RX+
6	-
7	-
8	-

- Due connettori µcoax per collegare G.703 a 75 ohm.
- Un connettore µcoax per il Sincronismo Esterno.

CONNETTORE DI ALLARME

Un connettore RJ45 8 contatti permette l'interfaccia di allarme.

Pin	Segnale
1	GND
2	URG
3	NURG
4	-
5	-
6	-
7	AND_BATT
8	OR_BATT

CONNETTORE DI DIAGNOSI

Permette la diagnosi e la configurazione dell'apparato connettendo un PC all'apparato d'utente esterno denominato LMS attraverso la propria interfaccia RS 232 con un connettore 9 poli femmina (DB9).

Pin	Segnale
1	-
2	TX
3	RX
4	-
5	GND
6	-
7	-
8	-
9	-

ALIMENTAZIONE

Due connettori plug (VB1 e VB2) consentono l'alimentazione del dispositivo (48 V 48 W oppure da alimentatore mod. TELECO S 369).

MORSETTO DI MASSA

Sulla parte anteriore del TS 607.T è presente un morsetto di massa segnalato da questo simbolo per la protezione di terra.

TS 607.7

CONNETTORE SHDSL (CONN. F. SUB D 9 PIN)

PIN	SEGNALE
1	Canale 4 : filo b
2	Canale 4 : filo a
3	Canale 3 : filo b
4	Canale 3 : filo a
5	TERRA
6	Canale 2 : filo b
7	Canale 2 : filo a
8	Canale 1 : filo b
9	Canale 1 : filo a

CONNETTORE G.703

Otto connettori µcoax per collegare G.703 a 75 ohm.

CONNETTORE DI ALLARME

Un connettore RJ45 8 contatti permette l'interfaccia di allarme.

Pin	Segnale
1	GND
2	URG
3	NURG
4	-
5	-
6	-
7	AND_BATT
8	OR_BATT

CONNETTORE DI DIAGNOSI

Permette la diagnosi e la configurazione dell'apparato connettendo un PC all'apparato d'utente esterno denominato LMS attraverso la propria interfaccia RS 232 con un connettore 9 poli femmina (DB9).

Pin	Segnale
1	-
2	TX
3	RX
4	-
5	GND
6	-
7	-
8	-
9	-

ALIMENTAZIONE

Due connettori plug (VB1 e VB2) permettono l'alimentazione.

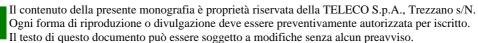
MORSETTO DI MASSA

Sulla parte anteriore del **TS 607.7** è presente un morsetto di massa segnalato da questo simbolo per la protezione di terra.

APPARATI DA RACK

TS 607.2

La scheda **TS 607.2** è costituita da 4 canali SHDSL indipendenti. Ogni canale presenta una interfaccia SHDSL 2 fili ed una interfaccia G.703 75 ohm.


- CONNETTORE SHDSL (CONN. F. SUB D 9 PIN)

PIN	SEGNALE
1	Canale 4 : filo b
2	Canale 4 : filo a
3	Canale 3 : filo b
4	Canale 3 : filo a
5	TERRA
6	Canale 2 : filo b
7	Canale 2 : filo a
8	Canale 1 : filo b
9	Canale 1 : filo a

- CONNETTORE G.703

- Otto connettori μcoax per collegare G.703 a 75 ohm.

PREDISPOSIZIONE DEI PONTICELLI

APPARATI DA TAVOLO

TS607.T

JP1 - JP2 - JP3:

Riservati.

JP4-5- 6-7-8: Selezione dell'impedenza

JP4-5-6-7-8	Impedenza
1-2	120 ohm
2-3	75 ohm

TS607.7

JP1 - JP2 - JP3:

Riservati.

APPARATO DA RACK

TS607.2

JP1- JP2 - JP3:

Riservati.

INDICATORI E COMANDI

APPARATI DA TAVOLO (TS 607.T / TS 607.7)

Lato Anteriore

Sul lato anteriore del contenitore sono serigrafati:

- la scritta SHDSL
- il logo TELECO
- il marchio CE
- le scritte di identificazione dei led
- la scritta del comando LMS

Lato Posteriore

Sul lato posteriore del contenitore sono serigrafati:

- il logo TELECO
- il codice del prodotto (TS 607.T/TS 607.7)
- le scritte di identificazione dei connettori

APPARATO DA RACK (TS 607.2)

Pannello Frontale

Sul frontale del TS 607.2 sono serigrafati:

- il logo TELECO
- il codice del prodotto (TS 607.2)
- il marchio CE
- le scritte di identificazione dei led
- le scritte di identificazione dei connettori

INDICAZIONI LUMINOSE DI ALLARME E FUNZIONAMENTO

APPARATI DA TAVOLO

TS 607.T

Led verde ALIM (alimentazione)

Acceso fisso alimentazione OK Spento fisso assenza alimentazione

Led giallo TST

Acceso fisso loop in corso

Spento fisso nessun loop in corso

Led rosso MIR

Acceso fisso Mancanza impulsi ricevuti su E1

Spento fisso Segnale E1

Led rosso E1 (stato dell'interfaccia G.703)

Acceso fisso Allarme su interfaccia locale E1 Blink veloce Allarme su interfaccia remota E1 Spento fisso nessun allarme su interfaccia E1

Led rosso TLA

Acceso fisso Allarme telealimentatore

Spento fisso Allarme telealimentatore assente

Led rosso SH (stato dell'interfaccia SHDSL)

Acceso fisso Allarme su interfaccia locale SHDSL Blink veloce Allarme su interfaccia remota SHDSL Spento fisso nessun allarme su interfaccia SHDSL

Led verde LK (link)

Acceso fisso Link ok Data Mode Blink veloce Hand-shake training Blink lento (Hand-shake per NTU) Spento fisso (Hand-shake per LTU)

TS 607.7

Led verde ALIM (alimentazione)

Acceso fisso alimentazione OK Spento fisso assenza alimentazione

Led giallo TST

Acceso fisso loop in corso

Spento fisso nessun loop in corso

Led rosso E1 (stato dell'interfaccia G.703)

Acceso fisso Allarme su interfaccia locale E1 Blink veloce Allarme su interfaccia remota E1 Spento fisso nessun allarme su interfaccia E1

Led verde LK (link)

Acceso fisso Link ok Data Mode Blink veloce Hand-shake training Blink lento (Hand-shake per NTU) Spento fisso (Hand-shake per LTU)

APPARATO DA RACK

TS 607.2

Led giallo TST

Acceso fisso loop in corso

Spento fisso nessun loop in corso

Led rosso E1 (stato dell'interfaccia G.703)

Acceso fisso Allarme grave su interfaccia locale E1 Blink veloce Allarme ATL su interfaccia locale E1 Spento fisso nessun allarme su interfaccia E1

Led rosso SH (stato dell'interfaccia SHDSL)

Acceso fisso Allarme su telealimentatore
Blink veloce Allarme su link SHDSL
Spento fisso nessun allarme su link SHDSL

Led verde LK (link)

Acceso fisso Link ok Data Mode Blink veloce Hand-shake training Blink lento (Hand-shake per NTU) Spento fisso (Hand-shake per LTU)

Tutti i led spenti

Canali disabilitati o scheda guasta

CARATTERISTICHE TECNICHE

CARATTERISTICHE ELETTRICHE

TS 607.T

- Alimentazione in c.c. applicabile sui connettori plug	$36 \div 72 \text{ V.c.c.}$
- Consumo nominale con telealimentatore a vuoto	< 5 W
- Consumo nominale con telealimentatore a pieno carico	< 20 W
- Tensione di telealimentazione	115 ÷ 120 V.d.c.

TS 607.7

- Tensioni di alimentazione in c.c. applicabile sui connettori plug	36 ÷ 72 V.c.c.
- Consumo nominale con telealimentatore a vuoto	< 5 W
- Consumo nominale con telealimentatore a pieno carico	< 40 W
- Tensione di telealimentazione	115 ÷ 120 V.d.c.

TS 607.2

- Tensioni di alimentazione in c.c.	$36 \div 72 \text{ V.c.c.}$
- Consumo nominale con telealimentatore a vuoto	< 5 W
- Consumo nominale con telealimentatore a pieno carico	< 40 W
- Tensione di telealimentazione	115 ÷ 120 V.d.c.

CARATTERISTICHE MECCANICHE

TS 607.T

- Costituzione contenitore da tavolo in plastica - Altezza 28 mm. 190 mm. - Larghezza - Profondità 155 mm.

TS 607.7

- Costituzione contenitore da tavolo in plastica - Altezza 28 mm. - Larghezza 190 mm. 155 mm. - Profondità

TS 607.2

La scheda **TS 607.2** deve essere inserita all'interno del subtelaio CN 380 ed ha le seguenti dimensioni:

- Larghezza 25 mm. - Profondità con maniglie 185 mm. - Altezza 214 mm. - Peso 352 gr.

CONDIZIONI AMBIENTALI DI FUNZIONAMENTO

TS 607.T

 $-5^{\circ}\text{C} \div +45^{\circ}\text{C}$ - Temperatura di funzionamento

 $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ - Temperatura di immagazzinaggio

- Umidità relativa fino al 90% non condensante con temperatura ambiente di 28°C

TS 607.7

- Temperatura di funzionamento $-5^{\circ}\text{C} \div +45^{\circ}\text{C}$

- Temperatura di immagazzinaggio $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$

- Umidità relativa fino al 90% non condensante con temperatura ambiente di 28°C

TS 607.2

 $-5^{\circ}\text{C} \div +45^{\circ}\text{C}$ - Temperatura di funzionamento

 $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ - Temperatura di immagazzinaggio

- Umidità relativa fino al 90% non condensante con temperatura ambiente di 28°C

REG – RIGENERATORE

L'unità REG è stata progettata per essere installata lungo la linea e permette di aumentare la distanza tra LTU e NTU.

L'unità REG può essere alimentata dalle unità LTU provviste di telealimentatore.

Apparato stand-alone RP 926

DESCRIZIONE

In un collegamento SHDSL possono essere utilizzati fino a 8 rigeneratori.

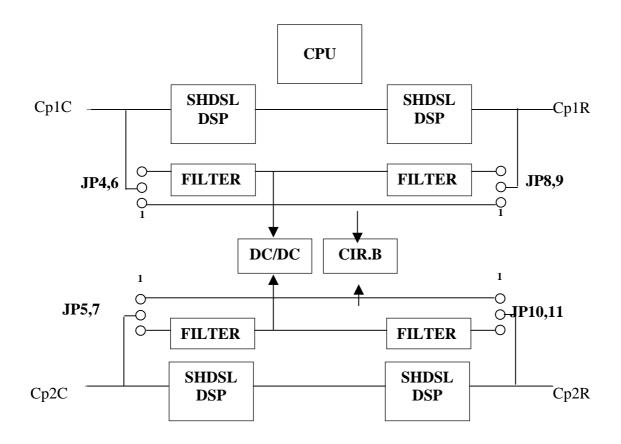
La lunghezza del passo di rigenerazione (distanza massima tra un terminale ed un rigeneratore o tra due rigeneratori) è determinata dalla velocità di trasmissione sul link, dal diametro del doppino utilizzato e dal numero di oggetti in linea da telealimentare.

L'apparato REG è un apparato SHDSL a 2/4 fili che permette di incrementare la distanza massima tra la centrale e l'utente (la lunghezza della tratta tra LTU e NTU); in questo modo è possibile garantire la disponibilità del servizio SHDSL anche per gli utenti situati oltre l'attuale limite di collegamento.

I rigeneratori **RP 926** sono conformi alle Norme:

- ETSI TS 101 524 v1.2.1 (03-2003);
- G.991.2 Annesso A e B.

Il rigeneratore può funzionare sostanzialmente in tre modalità differenti:


- 1 canale 4 fili
- 2 canali 2 fili
- 1 canale 2 fili

Le prime due modalità sono scelte da LTU, in base alla programmazione dello stesso, l'ultima viene attivata tramite ponticello e non è modificabile da software, e consente di utilizzare il rigeneratore in modalità basso consumo ad una sola coppia.

SCHEMA A BLOCCHI DEL RIGENERATORE

Qui di seguito è riprodotto lo schema a blocchi del rigeneratore RP 926 in cui si identificano:

SHDSL DSP: SHDSL Infineon chipset **CPU** : Central Processing Unit DC/DC : Convertitore DC/DC CIR.B : Circuito di Bagnatura **FILTER** : Filtro passa basso Cp1C : Coppia 1 Lato Centrale : Coppia 2 Lato Centrale Cp2C Cp1R : Coppia 1 Lato Remoto Cp2R : Coppia 2 Lato Remoto

PARTI FUNZIONALI PRINCIPALI DEL RIGENERATORE

- Microcontrollore / memoria

Il microcontrollore si occupa della programmazione delle periferiche presenti sulla scheda, del controllo della configurazione da rete nonché della gestione dei vari tipi di allarme e di EOC sia lato rete sia lato utente.

Il codice è residente su una EPROM in tecnologia FLASH.

- DC/DC

Il convertitore DC/DC alimenta l'apparato, il quale accetta durante l'intervallo una tensione di centrale del valore di $45 \div 120 \text{ V}$.

- Filtro

Il filtro passa basso disaccoppia la linea dal convertitore DC/DC.

- SHDSL INFINEON CHIPSET

Comprende il framer Infineon ed il chipset front-end analogico.

Il chipset Infineon SHDSL gestisce la trasmissione e la ricezione dei segnali che provengono dalla linea in conformità con lo standard G.SHDSL.

COSTITUZIONE RP926

Il ripetitore **RP 926** è costituito da una scheda a circuito stampato inserita in un contenitore plastico, realizzato in materiale autoestinguente ed antistatico, Blend T (PC+ABS), in conformità alle norme CEI 70-1 e EN 60950 paragrafo 2.

CONNETTORI DEL RIPETITORE

CONNETTORE SHDSL

Sul ripetitore RP 926 è presente un solo connettore DB9 maschio su cui sono attestate le 4 coppie (2 verso centrale e 2 verso utente):

Pin		Segnale
1	Cp2R	Coppia 2 lato utente filo b
2	Cp2R	Coppia 2 lato utente filo a
3	Cp1R	Coppia 1 lato utente filo b
4	Cp1R	Coppia 1 lato utente filo a
5	-	-
6	Cp2C	Coppia 2 lato centrale filo b
7	Cp2C	Coppia 2 lato centrale filo a
8	Cp1C	Coppia 1 lato centrale filo b
9	Cp1C	Coppia 1 lato centrale filo a

PREDISPOSIZIONE DEI PONTICELLI

All'interno del coperchio superiore dell'RP 926 è inserita un'etichetta autoadesiva che descrive le differenti predisposizioni dei ponticelli a seconda della configurazione desiderata come descritto nella seguente tabella

JP1: riservato

JP2: Selezione 2/4 fili

JP2	
APERTO	1 canale 4 fili o 2 canali 4
	fili
CHIUSO	1 canale 2 fili

JP3: Riservato

JP 4 – 6	JP 5 – 7	JP 8 – 9	JP 10 – 11	
2 - 3	2 - 3	2 - 3	2 - 3	Telealimentato da LT con by pass verso NT
2 - 3	2 - 3	1 - 2	1 - 2	Telealimentato da LT con chiusura bagnatura NT
2 - 3	2 - 3	-	-	Telealimentato da LT con lato NT isolato
2 - 3	2 - 3	2 - 3	2 - 3	Telealimentato da NT con by pass verso LT
1 - 2	1 - 2	2 - 3	2 - 3	Telealimentato da NT con chiusura bagnatura LT
-	-	2 - 3	2 - 3	Telealimentato da NT con lato LT isolato

INDICATORI E COMANDI RIPETITORE

Lato anteriore

Sul lato anteriore del contenitore sono serigrafati:

- la scritta SHDSL
- il logo Teleco
- il marchio CE
- il codice del prodotto (RP 926)

INSTALLAZIONE DEL RIPETITORE RP 926

Per installare il ripetitore **RP 926**, prima di tutto disconnettere il cavo a 9 poli, poi occorre aprire il contenitore plastico svitando le 4 viti. Predisporre i ponticelli (vedi tabella pag. 34) quindi richiudere lo stesso e ricollegare il cavo al connettore a 9 poli.

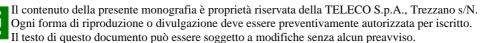
Attenzione: pericolo di scarica elettrica! il rigeneratore è attraversato dalla tensione di telealimentazione (V=120 V)

CARATTERISTICHE TECNICHE

CARATTERISTICHE ELETTRICHE

RP 926

- Tensione di telealimentazione	45÷120 V c.c.;
- Consumo di alimentazione	$< 3 \mathrm{W};$
- Tensione per passare da funz. norm. ad alta impedenza	<45 V;
- Corrente assorbita dal circuito di bagnatura	$1 \div 4 \text{ mA}$;


CARATTERISTICHE MECCANICHE

RP 926

Il ripetitore **RP 926** viene fornito in un contenitore plastico con dimensioni:

- Larghezza	103 mm.
- Profondità	153 mm.
- Altezza	27 mm.
- Peso	300 gr.

CONDIZIONI AMBIENTALI DI FUNZIONAMENTO

RP 926

- Temperatura di funzionamento

 $-33^{\circ}\text{C} \div +60^{\circ}\text{C}$

- Temperatura di trasporto / immagazzinaggio

 $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$

- Umidità relativa

fino al 90% non condensante con temperatura ambiente di 28°C

CONTENITORI PER RIGENERATORI

DESCRIZIONE

Esiste un contenitore con cestello interno per 4 rigeneratori **RP 926** denominato:

CP 396 contenente fino a 4 **RP 926** (installazione da palo)

CONTENITORE DA PALO CP 396

Il contenitore da palo **CP 396** può alloggiare fino a 4 RP 926 in una rastrelliera metallica. Nel contenitore è prevista una striscia con attestati 4 cavi terminati con connettore DB9 per il collegamento dei rigeneratori.

INSTALLAZIONE DEL CP 396

L'installazione e l'attivazione dei due contenitori a tenuta stagna IP65 sono estremamente semplici. Il **CP 396** va fissato a palo o eventualmente a muro con gli appositi accessori forniti. Una volta fissato, aprire la scatola da palo inserire i rigeneratori negli appositi alloggiamenti, collegare il connettore DB9 e serrare le viti di fissaggio per impedirne una eventuale fuoriuscita.

SUBTELAIO CN 380

DESCRIZIONE

Il subtelaio Teleco modello **CN 380** progettato per le apparecchiature SHDSL, è realizzato in conformità con la Normativa ETSI 300 119 e si può inserire all'interno dei telai ETSI N3

Tutte le parti meccaniche sono realizzate in acciaio, in modo da rendere il CN 380 robusto e allo stesso tempo leggero.

Il CN 380 contiene 17 slots, così da essere equipaggiato con:

- 1 Unità Allarmi (Teleco mod. **MA 172**)
- da 1 a 16 unità SHDSL (**TS 607.2**) e sono definite come slot 1 slot 16 partendo dal primo sulla destra del MA 172.

Il Modulo Allarmi (MA 172) realizzato su una scheda a circuito stampato, deve essere inserito solo nel primo slot a sinistra del CN 380.

Questo modulo sviluppa due tipologie di funzioni:

a) FUNZIONE DI GESTIONE

Controlla il colloquio del sistema di gestione con le schede attraverso due tipi di connessione:

- connessione locale attraverso un'interfaccia RS 232 (connettore 9 poli denominato LMS)
- connessione di rete attraverso interfaccia 10 Mbit/s IEEE 802.3 (connettore RJ45 denominato LAN)

b) FUNZIONE DI RILEVAZIONE ALLARMI DI ALIMENTAZIONE

La scheda rileva l'assenza delle tensioni di alimentazione ALIM1 e ALIM2, genera il relativo allarme e raccoglie gli allarmi provenienti dalle schede.

Inoltre, gestisce le lampade di telaio secondo le modalità di Telecom Italia (Capitolato Tecnico nº 1368)

All'interno del CN 380 è presente una piastra madre che supporta tutti i connettori con le relative interconnessioni.

Sopra gli slots, sul pannello anteriore, sono attestati:

- i connettori ALLARMI;
- i connettori ALIMENTAZIONE;
- il connettore di SINCRONISMO ESTERNO;
- la vite di massa.

CONNETTORI DEL CN 380

CONNETTORI DI ALLARME

Due tipi di allarme sono presenti sul **CN 380**:

1) un allarme per ogni singola linea, attestato sui quattro connettori D-Sub 37 pin, che permette di rilevare esattamente il canale guasto.

Due tipi di allarmi sono generati da ogni singolo canale:

- **URGENTE (URG)**
- NON URGENTE (NURG)

Per ogni slot, 4 URG. e 4 NURG sono inviati al connettore. Se si usa una scheda a 4 canali questi ultimi sono tutti usati, mentre se si usa una scheda a 2 canali solo 2 URG e 2 NURG sono usati e così, una scheda a un canale utilizzerà 1 URG e 1 NURG.

ALLARME L1 ÷ L16

PIN	SEGNALE
1	NURG L1 SLOT 4
2	NURG L2 SLOT 4
3	NURG L3 SLOT 4
4	NURG L4 SLOT 4
5	NURG L1 SLOT 3
6	NURG L2 SLOT 3
7	NURG L3 SLOT 3
8	NURG L4 SLOT 3
9	NURG L1 SLOT 2
10	NURG L2 SLOT 2
11	NURG L3 SLOT 2
12	NURG L4 SLOT 2
13	NURG L1 SLOT 1
14	NURG L2 SLOT 1
15	NURG L3 SLOT 1
16	NURG L4 SLOT 1
17	GND
18	GND
19	GND
20	URG. L1 SLOT 4
21	URG. L2 SLOT 4
22	URG. L3 SLOT 4
23	URG. L4 SLOT 4
24	URG. L1 SLOT 3
25	URG. L2 SLOT 3
26	URG. L3 SLOT 3
27	URG. L4 SLOT 3
28	URG. L1 SLOT 2
29	URG. L2 SLOT 2
30	URG. L3 SLOT 2
31	URG. L4 SLOT 2
32	URG. L1 SLOT 1
33	URG. L2 SLOT 1
34	URG. L3 SLOT 1
35	URG. L4 SLOT 1
36	GND
37	GND

ALLARME L17 ÷ L32

PIN	SEGNALE
1	NURG L1 SLOT 8
2	NURG L2 SLOT 8
3	NURG L3 SLOT 8
4	NURG L4 SLOT 8
5	NURG L1 SLOT 7
6	NURG L2 SLOT 7
7	NURG L3 SLOT 7
8	NURG L4 SLOT 7
9	NURG L1 SLOT 6
10	NURG L2 SLOT 6
11	NURG L3 SLOT 6
12	NURG L4 SLOT 6
13	NURG L1 SLOT 5
14	NURG L2 SLOT 5
15	NURG L3 SLOT 5
16	NURG L4 SLOT 5
17	GND
18	GND
19	GND
20	URG. L1 SLOT 8
21	URG. L2 SLOT 8
22	URG. L3 SLOT 8
23	URG. L4 SLOT 8
24	URG. L1 SLOT 7
25	URG. L2 SLOT 7
26	URG. L3 SLOT 7
27	URG. L4 SLOT 7
28	URG. L1 SLOT 6
29	URG. L2 SLOT 6
30	URG. L3 SLOT 6
31	URG. L4 SLOT 6
32	URG. L1 SLOT 5
33	URG. L2 SLOT 5
34	URG. L3 SLOT 5
35	URG. L4 SLOT 5
36	GND
37	GND

ALLARME L33 ÷ L48

PIN	SEGNALE
1	NURG L1 SLOT 12
2	NURG L2 SLOT 12
3	NURG L3 SLOT 12
4	NURG L4 SLOT 12
5	NURG L1 SLOT 11
6	NURG L2 SLOT 11
7	NURG L3 SLOT 11
8	NURG L4 SLOT 11
9	NURG L1 SLOT 10
10	NURG L2 SLOT 10
11	NURG L3 SLOT 10
12	NURG L4 SLOT 10
13	NURG L1 SLOT 9
14	NURG L2 SLOT 9
15	NURG L3 SLOT 9
16	NURG L4 SLOT 9
17	GND
18	GND
19	GND
20	URG. L1 SLOT 12
21	URG. L2 SLOT 12
22	URG. L3 SLOT 12
23	URG. L4 SLOT 12
24	URG. L1 SLOT 11
25	URG. L2 SLOT 11
26	URG. L3 SLOT 11
27	URG. L4 SLOT 11
28	URG. L1 SLOT 10
29	URG. L2 SLOT 10
30	URG. L3 SLOT 10
31	URG. L4 SLOT 10
32	URG. L1 SLOT 9
33	URG. L2 SLOT 9
34	URG. L3 SLOT 9
35	URG. L4 SLOT 9
36	GND
37	GND

ALLARME L49 ÷ L64

PIN	SEGNALE
1	NURG L1 SLOT 16
2	NURG L2 SLOT 16
3	NURG L3 SLOT 16
4	NURG L4 SLOT 16
5	NURG L1 SLOT 15
6	NURG L2 SLOT 15
7	NURG L3 SLOT 15
8	NURG L4 SLOT 15
9	NURG L1 SLOT 14
10	NURG L2 SLOT 14
11	NURG L3 SLOT 14
12	NURG L4 SLOT 14
13	NURG L1 SLOT 13
14	NURG L2 SLOT 13
15	NURG L3 SLOT 13
16	NURG L4 SLOT 13
17	GND
18	GND
19	GND
20	URG. L1 SLOT 16
21	URG. L2 SLOT 16
22	URG. L3 SLOT 16
23	URG. L4 SLOT 16
24	URG. L1 SLOT 15
25	URG. L2 SLOT 15
26	URG. L3 SLOT 15
27	URG. L4 SLOT 15
28	URG. L1 SLOT 14
29	URG. L2 SLOT 14
30	URG. L3 SLOT 14
31	URG. L4 SLOT 14
32	URG. L1 SLOT 13
33	URG. L2 SLOT 13
34	URG. L3 SLOT 13
35	URG. L4 SLOT 13
36	GND
37	GND

2) Un allarme riepilogativo che rileva qualsiasi anomalia sul cestello. Questo allarme è attestato sul connettore a 15-pin, posto sul MA 172.

PIN	SEGNALE
1	GND
2	URG
3	NURG
4	-
5	OR BATT – Almeno una delle due alim. in entrata non è presente
6	AND BATT – entrambe le alimentazioni non sono presenti
7	-
8	MA 172 GUASTO
9	-
10	-
11	-
12	-
13	-
14	-
15	-

ALIMENTAZIONE

Il sub-telaio preleva dai connettori 3W3 l'alimentazione necessaria per funzionare.

PIN	SEGNALE
A1	POLO POSITIVO
A2	-
A3	POLO NEGATIVO

SINCRONISMO ESTERNO

Permette di sincronizzare le schede del sub-telaio attraverso una sorgente di sincronismo esterno che deve avere le seguenti caratteristiche:

Velocità: 2048 Kbit/s Interfaccia: G.703 / 75 ohm

MORSETTO DI MASSA

Sopra gli slots, sul pannello superiore, è presente un morsetto di massa segnalata da questo simbolo per la protezione di terra.

CONNETTORI DEL MA 172

CONNETTORE DI DIAGNOSI

Permette la diagnosi e la configurazione dell'apparato connettendo un PC all'apparato d'utente esterno denominato LMS attraverso la propria interfaccia RS 232 con un connettore 9 poli femmina (DB9).

Pin	Segnale
1	-
2	TX
3	RX
4	-
5	GND
6	-
7	-
8	-
9	-

CONNETTORE LAN

Un connettore RJ45 a 8 contatti per l'interfaccia LAN

Pin	Segnale
1	TX +
2	TX -
3	RX +
4	-
5	-
6	RX -
7	-
8	-

CONNETTORE EXT BUS

Un connettore RJ45 a 8 contatti per l'interfaccia EXT BUS.

Pin	Segnale
1	TX +
2	TX -
3	RX +
4	-
5	-
6	RX -
7	-
8	-

PREDISPOSIZIONE DEI PONTICELLI DEL MA 172

JP1-2-3	Impostazione
1-2	Master
2-3	Slave

INDICAZIONI LUMINOSE DI ALLARME E FUNZIONAMENTO DEL MA 172

Led verde ALIM (Alimentazione)

Acceso fisso Presenza di alimentazione Spento fisso Assenza di alimentazione

Led giallo LAN (Ethernet)

Acceso fisso Connessione a LAN

Spento fisso Nessuna connessione a LAN

Led giallo MS (Master/Slave)

Acceso fisso Master Spento fisso Slave

Led rosso URG (Allarmi riepilogativi schede urgenti)

Acceso fisso da 1 a 16 schede che presentano almeno un canale con allarme urgente

oppure l'assenza della scheda programmata

Spento fisso Nessuna scheda con allarme urgente

Led rosso NURG (Allarmi riepilogativi schede non urgenti)

Acceso fisso da 1 a 16 schede che presentano almeno un canale con allarme non

urgente o assenza di una delle due alimentazioni

Spento fisso Nessuna scheda con allarme non urgente

INDICATORI E COMANDI

CN 380

Sul pannello arretrato del CN 380, sopra gli slots delle schede, sono serigrafati:

- il logo Teleco
- il marchio CE
- il codice del prodotto (CN 380)
- le scritte di identificazione dei connettori

MA 172

Sul frontale del MA 172 sono serigrafati:

- il logo Teleco
- il marchio CE
- il codice del prodotto (MA 172)
- le scritte di identificazione dei connettori;
- le scritte di identificazione dei led.

CARATTERISTICHE TECNICHE

CARATTERISTICHE ELETTRICHE

CN 380

- Resistenza di isolamento	> 5 Gohm
- Rigidità dielettrica	
tra fili di linea e terra	1 KV per 1'
tra la morsettiera di alimentazione e la terra	2 KV per 1'

MA 172

$36 \div 72 \text{ V c.c.};$
< 5 W;
500 V;
> 1 Gohm

CARATTERISTICHE MECCANICHE

CN 380

- Larghezza	534 mm.
- Max. profondità	239 mm.
- Altezza	275 mm.

MA 172

- Larghezza	22 mm.
- Altezza	214 mm.
- Profondità	185 mm.
- Peso	213 gr.

CONDIZIONI AMBIENTALI DI FUNZIONAMENTO

CN 380

 $da +5^{\circ} a +40^{\circ} C$ - Temperatura di funzionamento da -40° a +70°C - Temperatura di trasporto / immagazzinaggio

- Umidità relativa fino al 90% non condensante con temperatura ambiente di 28°C

MA 172

- Temperatura di funzionamento $da +5^{\circ} a +40^{\circ} C$

 $da - 40^{\circ} a + 70^{\circ} C$ - Temperatura di trasporto / immagazzinaggio

- Umidità relativa fino al 90% non condensante con temperatura ambiente di 28°C

TELAIO ETSI TN 338

Il telaio **TN 338** TELECO, è stato realizzato per contenere apparati rack della serie TD 600 ed in generale per alloggiare subtelai N3.

Il telaio TN 338 è conforme alla Norma:

- ETSI TS 300-119

IMPATTO AMBIENTALE E SICUREZZA

I telai serie **TN 338** sono stati progettati e costruiti tenendo conto delle vigenti Normative in materia di Sicurezza ed ai sensi di tali disposizioni non sono da ritenere pericolosi.

Inoltre, ai sensi del D.L. 626/94, per la loro costituzione sono utilizzati componenti e materiali tali da non creare problemi di pericolosità per l'uomo e per l'ambiente in tema di "smaltimento di rifiuti".

I telai serie **TN 338** rispettano le condizioni previste dalle Norme per la Marcatura CE.

CONDIZIONI AMBIENTALI DI FUNZIONAMENTO TN 338

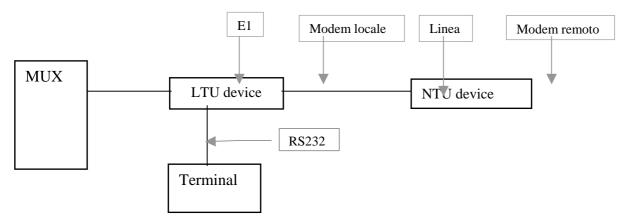
- Temperatura di funzionamento

 $-5^{\circ}\text{C} \div +45^{\circ}\text{C}$

- Temperatura di immagazzinaggio

 $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$

- Umidità relativa


fino al 90% non condensante con temperatura ambiente di 28°C

SISTEMA DI GESTIONE

Il **SISTEMA TD 600** può essere gestito sia localmente che da remoto.

Nel caso di gestione locale il terminale è connesso all'apparato, il quale deve essere predisposto per essere gestito attraverso l'interfaccia RS232.

L'apparato LTU può essere gestito attraverso il programma applicativo L.M.S. sviluppato da Teleco.

Per quanto riguarda la gestione da remoto, invece, l'apparato NTU viene gestito attraverso il canale EOC relativo al flusso SHDSL oppure tramite EOC relativo al flusso E1 trasportato.

Quando l'apparato LTU è un apparato da rack, il sistema può essere gestito tramite MA 172 sia tramite interfaccia RS232 che attraverso l'interfaccia LAN IEEE 802.3.

Gli apparati di utente NTU possono essere raggiunti anche attraverso EOC sul flusso E1, in questo caso il protocollo è proprietario e può essere sviluppato in accordo con il cliente (al momento è stato progettato per il sistema di gestione di TELECOM ITALIA).

L.M.S (LINE MANAGEMENT SYSTEM)

Il software di gestione L.M.S., realizzato nei laboratori della Teleco, è stato progettato per il **SISTEMA TD 600** e permette:

- la supervisione del link (configurazione ed allarmi);
- di modificare i parametri di linea e la configurazione di ogni singola unità;
- di aggiornare il firmware delle unità presenti nel sistema;
- salvare su file la configurazione del sistema;
- caricare la configurazione del sistema da file;
- di creare, configurare e salvare su file un sistema in modalità OFF LINE.

Per ulteriori informazioni sul funzionamento del sistema riferirsi al file "HELP" in linea.

AFFIDABILITA'

PRODOTTI	DESCRIZIONE	MTBF (h)
TS 605.4	Terminale SHDSL 2/4 fili da tavolo + DCE3 X/V (DB37) / G.703 (75 e 120 ohm) + Kit connettori (S 386)	1.100.000
TS 607.2	Terminale LTU SHDSL Master/Slave con telealim.	750.000
TS 607.7	Terminale LTU/NTU Quadricanale SHDSL Master/Slave da tavolo con telealimentatore + Kit connettori (S385)	750.000
TS 607.T	Terminale LTU SHDSL Master/Slave da tavolo con telealimentatore + Kit connettori (S384)	1.000.000
RP 926	Modulo Rigeneratore per una linea SHDSL 4 fili	2.000.000
MA 172	Unità Allarmi con due porte di acceso Ethernet 10/100 e 1 porta locale	1.200.000

I sub-telai ed i cavi sono elementi esclusivamente passivi e, se correttamente installati, hanno un MTBF estremamente elevato che non incide quello del Sistema SHDSL.

PROTEZIONE EMC – SICUREZZA – MARCATURA CE

Il **SISTEMA SHDSL TD 600** è stato progettato e realizzato in conformità alle seguenti Norme:

- Compatibilità Elettromagnetica (EMC): EN 55022

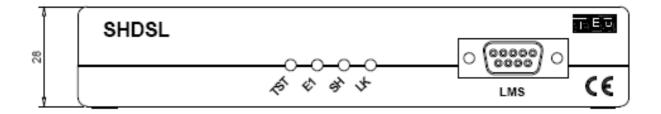
- Protezione e Sicurezza: EN 60950 e ETS 300 386

conseguentemente è conforme alla Normativa per la marcatura CE.

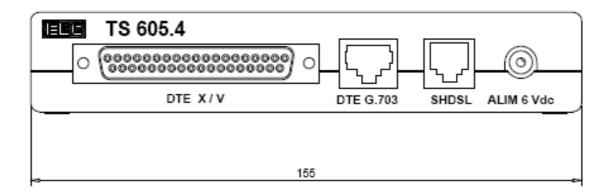
IMPATTO AMBIENTALE

Il prodotto è conforme alla direttiva 2002/95/CE del Parlamento Europeo e del Consiglio del 27 Gennaio 2003 riguardo le restrizioni sull'uso di sostanze pericolose nelle apparecchiature elettriche con l'esenzione per apparecchiature di trasmissione per reti infrastrutturali (piombo in saldature a stagno) – CONFORMITA' RoHS 5 (G.U. UE del 21-10-2005).

ACCESSORI


Alcuni degli apparati che costituiscono il sistema SHDSL Teleco possono essere forniti con i seguenti accessori:

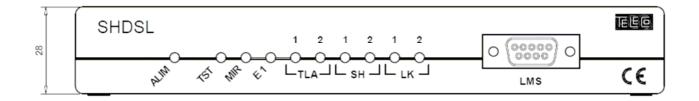
S 192	Transizione di Utente 2Mbit/s - RJ45 / COAX 1.0/2.3
S 205	Adattatore per DCE-3 V.36 / V.11
S 207	Adattatore per DCE-3 V.36 / V.35
S 369	AC/DC 230 Vac / 48 Vdc 48W con connettore plug
S 370	Kit accessori per installazione RP 926 su armadio R.L. a C.T. Telecom Italia n°1299
S 371	Kit accessori per installazione RP 926 su armadio R.L. a C.T. Telecom Italia n°1146
S 372	Connettore bipolare plug a saldare maschio
S 373	Kit accessori per installazione da palo per CP 396
S 374	Connettore COAX 1.0/2.3 Maschio Volante
S 375	Pannello distribuzione Cavi
S 376	Cavo di adattamento per box 10/14 sistemi (Transizione DB9 – cordoncini a spinetta)
S 379	AC/DC 230 Vac / 6 Vdc 6W con connettore plug
S 381	Kit connettori cablaggio sub-telaio centrale (128 COAX 1.0/2.3 + 16 DB9 + 1 RJ45 +
	2 3W3)
S 382	Kit connettori per scheda allarme MA 172 (2 RJ45 + 1 DB15)
S 383	Kit connettori per scheda TS 607.2 (1 DB9 + 8 COAX 1.0 / 2.3)
S 384	Kit connettori per scheda TS 607.T (2 plug + 2 RJ45 + 1 DB9 + 3 COAX 1.0/2.3)
S 385	Kit connettori per scheda TS 607.7 (2 plug + 1 DB9 + RJ 45 + 8 COAX 1.0/2.3)
S 386	Kit connettori per scheda TS 605.4 (1 RJ45 + 1 RJ11 + S 192)
S 393	Squadrette per fissaggio a parete TS 605.4
S 394	Squadrette per fissaggio a parete TS 607.7 / TS 607.T



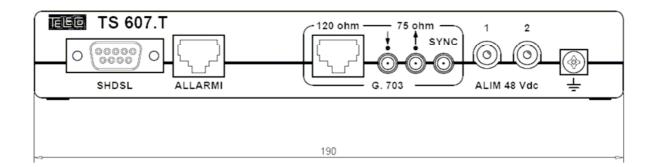
ILLUSTRATIVO: TS605.4 I 672

VISTA ANTERIORE

VISTA POSTERIORE



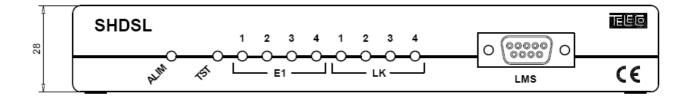
PROFONDITA' 120 mm.



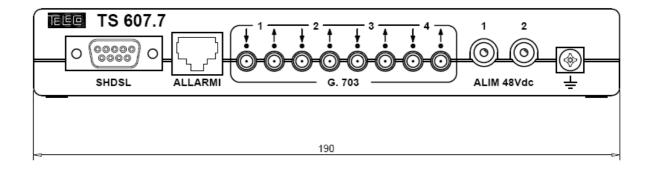
ILLUSTRATIVO: TS607.T I 670

VISTA ANTERIORE

VISTA POSTERIORE

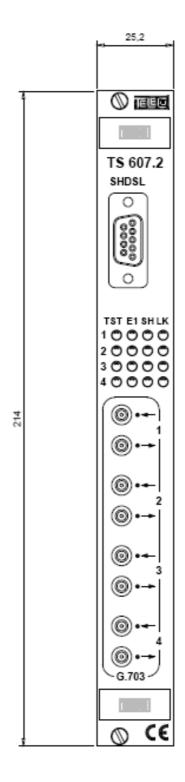


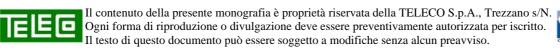
PROFONDITA' SCATOLA 155 mm.



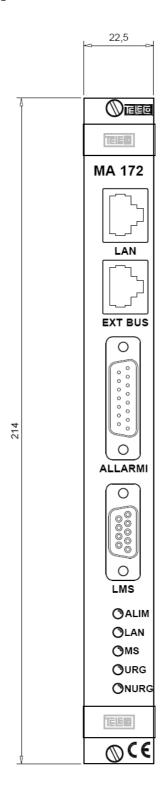
ILLUSTRATIVO: TS607.7 I 769

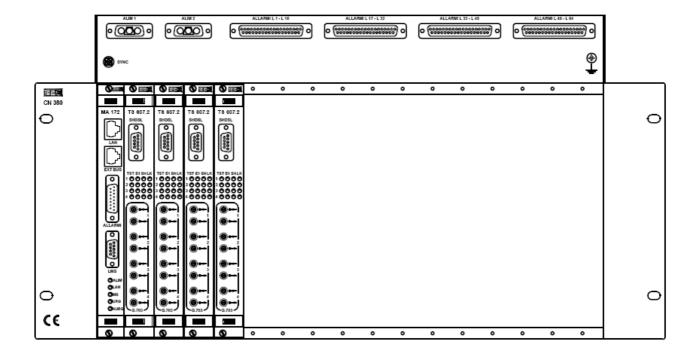
VISTA ANTERIORE


VISTA POSTERIORE



PROFONDITA' SCATOLA 155 mm.

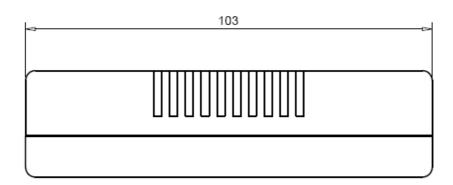

ILLUSTRATIVO: TS607.2 I 675

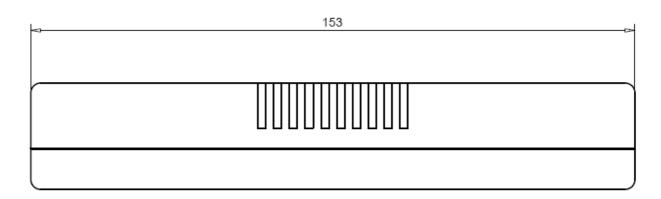


ILLUSTRATIVO: MA172 I 678



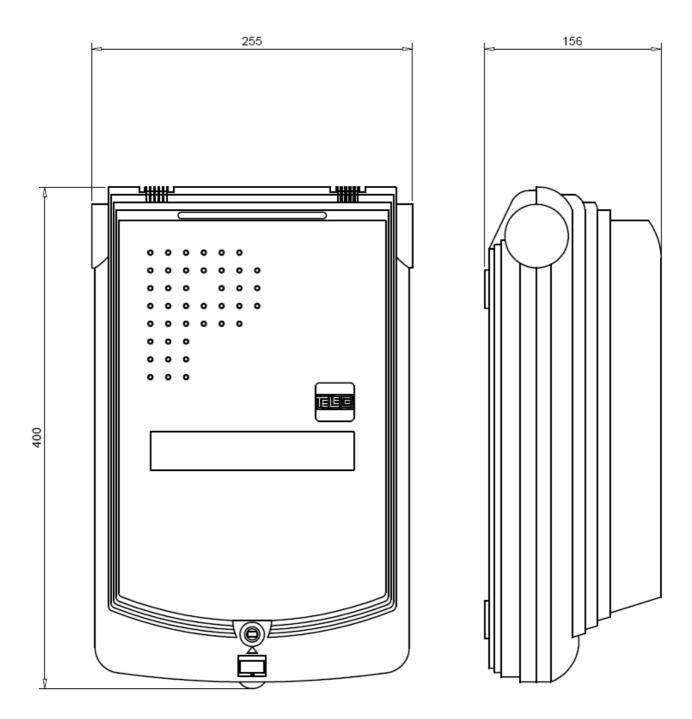
ILLUSTRATIVO: CN380 I 665

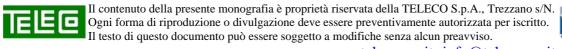



ILLUSTRATIVO: 926 I 694

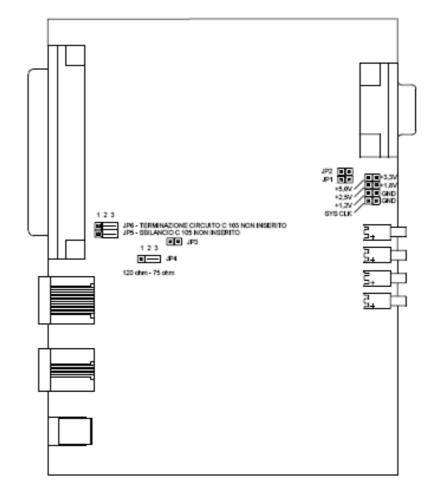
VISTA ANTERIORE

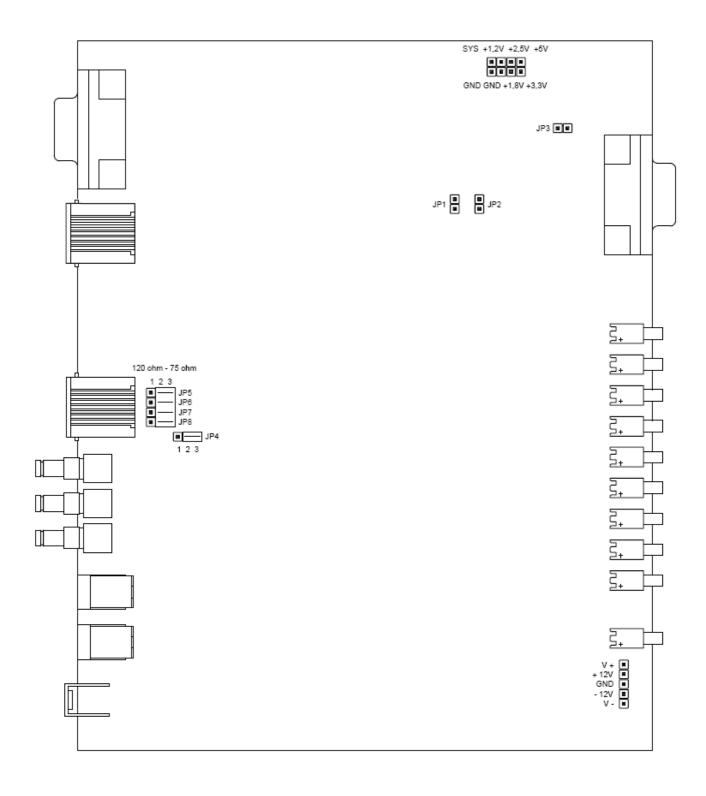
VISTA POSTERIORE

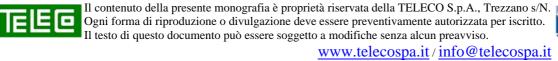

VISTA LATERALE CAVE SU ENTRAMBI I LATI

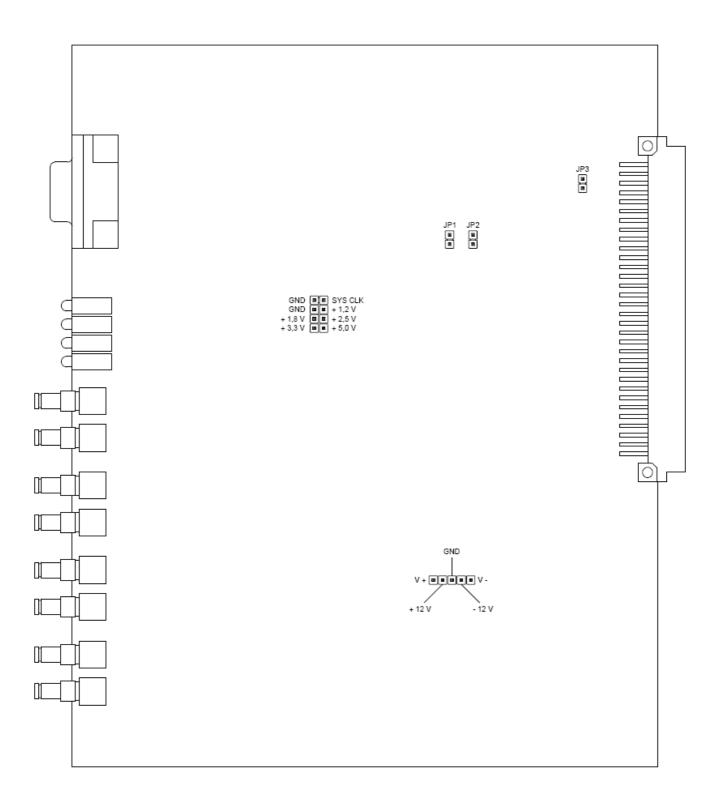


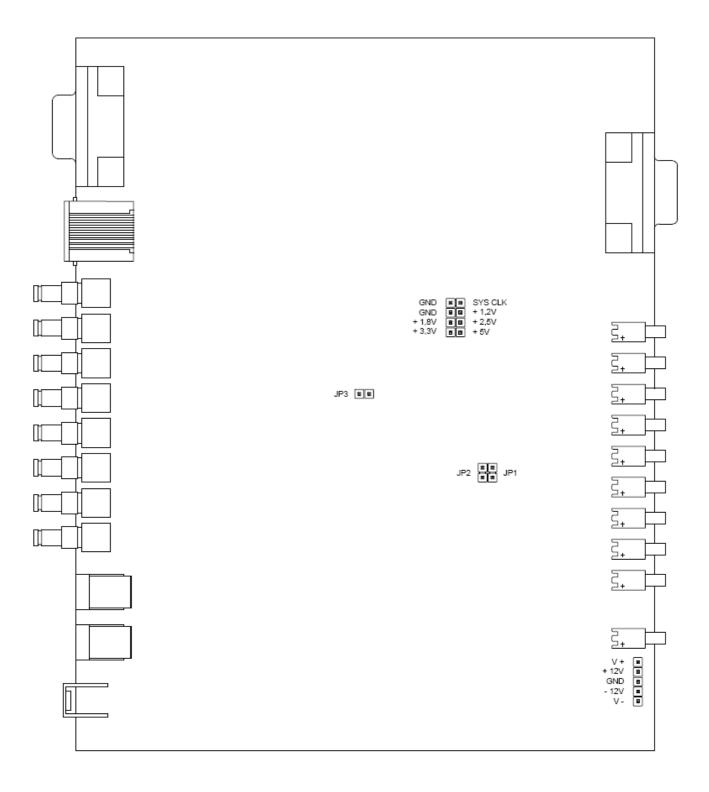
Il contenuto della presente monografia è proprietà riservata della TELECO S.p.A., Trezzano s/N. Ogni forma di riproduzione o divulgazione deve essere preventivamente autorizzata per iscritto. Il testo di questo documento può essere soggetto a modifiche senza alcun preavviso.


ILLUSTRATIVO: 396 I 686



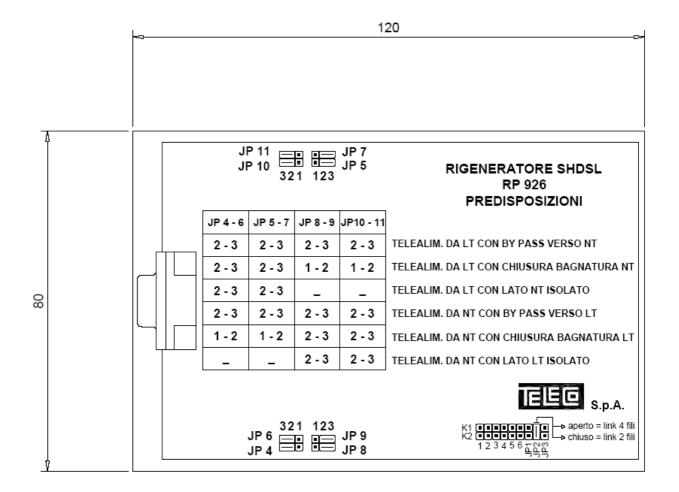

ILLUSTRATIVO: TS605.4 I 688


ILLUSTRATIVO: TS607.T I 690


ILLUSTRATIVO: TS607.2 I 691

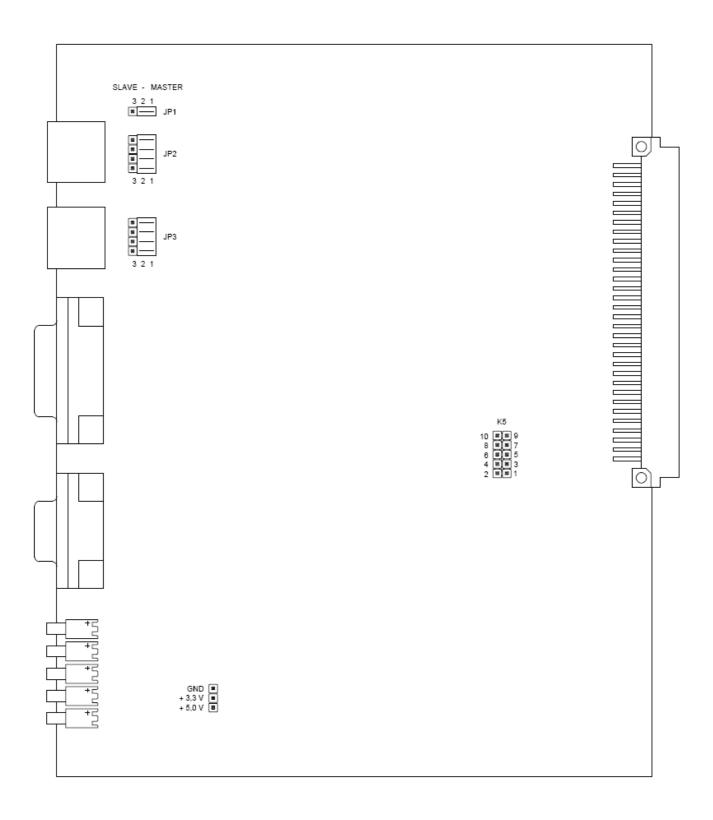
Il contenuto della presente monografia è proprietà riservata della TELECO S.p.A., Trezzano s/N. Ogni forma di riproduzione o divulgazione deve essere preventivamente autorizzata per iscritto. Il testo di questo documento può essere soggetto a modifiche senza alcun preavviso.

ILLUSTRATIVO: TS607.7 I 770



Il contenuto della presente monografia è proprietà riservata della TELECO S.p.A., Trezzano s/N. Ogni forma di riproduzione o divulgazione deve essere prevenuvamente autonimi Il testo di questo documento può essere soggetto a modifiche senza alcun preavviso.

www.telecospa.it/info@te Ogni forma di riproduzione o divulgazione deve essere preventivamente autorizzata per iscritto.



ILLUSTRATIVO: RP926 I 682

ILLUSTRATIVO: MA172 I 692

Il contenuto della presente monografia è proprietà riservata della TELECO S.p.A., Trezzano s/N. Ogni forma di riproduzione o divulgazione deve essere prevenuvamente automorphismo di riproduzione deve essere soggetto a modifiche senza alcun preavviso.

Www.telecospa.it/info@te Ogni forma di riproduzione o divulgazione deve essere preventivamente autorizzata per iscritto.

